ScaleText: The Design of a Scalable, Adaptable and User-Friendly Document System for Similarity Searches
نویسندگان
چکیده
This paper describes the design of a new ScaleText system aimed at scalable semantic indexing of heterogeneous textual corpora. We discuss the design decisions that lead to a modular system architecture for indexing and searching using semantic vectors of document segments – nuggets of wisdom. The prototype system implementation is evaluated by applying Latent Semantic Indexing (LSI) on the Enron corpus. And the Bpref measure is used to automate comparing the performance of different algorithms and system configurations.
منابع مشابه
Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملVisual knowledge management with adaptable document maps
Analyzing, structuring and organizing documented knowledge is an important aspect of knowledge management. In literature so-called document maps have been proposed for visualizing the semantic similarity structure of a corpus of documents. So far, however, a method which is specifically designed for typical document analysis tasks in knowledge management – along with an applicationoriented eval...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کامل